

BIRZEIT UNIVERSITY

Electrical and Computer Engineering Department

Second Semester 2018
Digital Systems (ENCS234) Midterm Exam
Time: 11:30-13:00 (90 minutes)
Date: 22/04/2018
Room: Al-Juraysi001

Instructor:

\square Dr. Mohammed Hussein S, M, W 11:00-11:50 PNH201Dr. Mohammed Hussein S, M, W 12:00-12:50 Masri204Dr. Ahmad Alsadeh
S, M, W 10:00-10:50 Masri106

Student Name:

\qquad Student ID: \qquad

Question $\#$	ABET Outcome	Full Mark	Student's Mark
Q1		30	
Q2		13	
Q3		17	
Q4		14	
Q5		14	
Q6		100	
TOTAL			

Note: write your solution on the space provided. If you need more space, write on the back of the sheet containing the question.

ABET Outcome

(a) an ability to apply knowledge of mathematics, science, and engineering
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(e) an ability to identify, formulate, and solve engineering problems

Question 1: (30 points, 3 points each). Select the correct answer

1. The magnitude of $(80)_{10}$ is:
A. $(0000101)_{2}$
B. $(1010000)_{2}$
C. $(1100000)_{2}$
D. $(0010000)_{2}$
E. $(1011000)_{2}$
2. The magnitude of $(0.125)_{10}$ is:
A. $(0.010)_{2}$
B. $(0.011)_{2}$
C. $(0.111)_{2}$
D. $(0.100) 2$
E. $(0.001)_{2}$
3. The representation of the decimal number 129.33 in BCD is
A. $(10000001.0101)_{B C D}$
B. $(10000001.00010001)_{\mathrm{BCD}}$
C. $(00010010 \text { 1001. 0011 })_{B C D}$
D. (0001 0010 1001. 0011 0011) $)_{\text {bсd }}$
E. (0001 0010 1001. 0101) $)_{\text {bс }}$
4. Using 2's complement binary representation, the result for 100000-100011
A. 111101
B. 111100
C. 000011
D. 111011
E. Not possible, overflow
5. The simplest form of $F=Y(X+Y)+(X+Y)^{\prime} Z+Y Z$
A. $F=1$
B. $F=Y$
C. $F=X^{\prime} Z$
D. $F=Y+X^{\prime} Z$
E. $F=Y+Y Z+X^{\prime} Z$
6. The dual of the function $\left(x+y^{\prime} z^{\prime}\right)\left(w x^{\prime} z+w^{\prime} y z^{\prime}\right)$ is:
A. $x^{\prime} \cdot(y+z)+\left(w^{\prime}+x+z^{\prime}\right) \cdot\left(w+y^{\prime}+z\right)$
B. $x^{\prime}+(y+z) \cdot\left(w^{\prime}+x+z^{\prime}\right)+\left(w+y^{\prime}+z\right)$
C. $x \cdot\left(y^{\prime}+z^{\prime}\right)+\left(w+x^{\prime}+z\right) \cdot\left(w^{\prime}+y+z^{\prime}\right)$
D. $x+\left(y^{\prime}+z^{\prime}\right) \cdot\left(w+x^{\prime}+z\right)+\left(w^{\prime}+y+z^{\prime}\right)$
E. $x \cdot(y+z)+(w+x+z) \cdot(w+y+z)$
7. Given the Boolean function $F(x, y, z)=(x+y)\left(x^{\prime}+z\right)\left(y^{\prime}+z^{\prime}\right)$, the expression of F as a product-ofmaxterms is
A. $\mathrm{F}=\sum m(2,5)$
B. $F=\Pi M(2,5)$
C. $\mathrm{F}=\sum m(0,1,3,4,6,7)$
D. $\mathbf{F}=\rceil \mathbf{M}(0,1,3,4,6,7)$
E. $F=\Pi M(0,1,2,5,7)$
8. Shown to the right is the K-Map of the Boolean function \mathbf{F} subject to the don't care conditions d

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,4,6,10,12) \\
& \mathrm{d}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(7,13,14,15)
\end{aligned}
$$

the minimum SOP expression of F is:

	00	01	11	10
00	1	1	0	1
01	1	0	x	1
11	1	X	X	X
10	0	0	0	1

A. $F=C D^{\prime}+B D^{\prime}$
B. $F=B^{\prime}+A^{\prime} B^{\prime} C^{\prime}$
C. $F=C D^{\prime}+B^{\prime}+A^{\prime} B^{\prime} C^{\prime}$
D. $F=C D^{\prime}+C B+C^{\prime} D^{\prime} B+A^{\prime} B^{\prime} C^{\prime}$
E. $F=C D^{\prime}+C^{\prime} D^{\prime} B+A^{\prime} B^{\prime} C^{\prime}$
9. Implementation of full adder with two half adders and an \qquad gate
A. OR
B. NOR
C. XOR
D. XNOR

10. A logic circuit has two inputs $X \& Y$ each is a 2-bit unsigned umber. It has an output number Z such that

the minimum number of bits required for the output number Z is
A. 2
B. 3
C. 4
D. 5
E. 6

$$
\operatorname{Max}(Z)=(3)^{2}+(3)^{2}=18 \rightarrow \text { Requires 5-Bits } \rightarrow \text { Outputs : } Z_{4} Z_{3} Z_{2} Z_{1} Z_{0}
$$

Question 2 ($\mathbf{1 3}$ points): For the given K-map representing the Boolean function F, answer the following questions:

$A B$	00	01	11	10
00		1		
01		1		1
11	1	1	1	1
10	1	1		1

A. Which one of the following is a Prime Implicant (PI) of F :

Term	AC'	A'BC	BC'D	$C^{\prime} D$	$A D^{\prime}$
PI (Yes/No)	Yes	No	No	Yes	Yes

B. Which one of the following is an Essential Prime Implicant (EPI) of F:

Term	C'D	A'BC	$A^{\prime} C^{\prime}$	$B^{\prime} D$	$A D^{\prime}$
EPI (Yes/No)	Yes	No	No	No	Yes

C. Obtain a simplified sum-of-product (SOP) expression for F.
F = AB + C'D + AD' + BCD'

Question 3 (17 points): Given the Quine-McCluskey method for minimization of the Boolean function $F(A, B, C, D)=\sum m(0,1,4,6,8,9,10,12)+d \sum m(5,7,14)$
A. Grouping minterms by competining the table below (6 points)

ABCD	ABCD	
(0) 0000 V		
	$(0,1) \quad 000-\sqrt{ }$	$(0,1,4,5) \quad 0-0-$
(1) 0001 l	$(0,4) \quad 0-00 \sqrt{ }$	(0,1,8,9) - 00 -
(4) 0100 V	$(0,8) \quad-000 \sqrt{ }$	$(0,4,8,12) \quad-00$
(8) 1000 V		
(5) 0101 l	(1,5) 0-01 V	$(4,5,6,7) \quad 01$--
(6) 0110 V	$(1,9) \quad-001 \checkmark$	$(4,6,12,14)-1-0$
(9) 1001 V	$(4,5) \quad 010-\sqrt{ }$	$(8,10,12,14)$ 1-- 0
(10) 1010 V	$(4,6) \quad 01-0 \vee$	
(12) 1100 V	$(4,12)-100 \checkmark$	
	$(8,9) \quad 100-\sqrt{ }$	
(7) 0111 V (14) $1110 \sqrt{ }$	$(8,10) \quad 10-0 \vee$	
	$(8,12) \quad 1-00 \downarrow$	
	(5,7) 01-1 V	
	$(6,7) \quad 011-\sqrt{ }$	
	$(6,14)-110 \sqrt{ }$	
	$(10,14)$ 1-10 ${ }^{\text {d }}$	
	$(12,14)$ 11-0 $\sqrt{ }$	

B. From the Prime Implicant Chart (8 points)

Prime Implicants	Minterms								Don't care		
	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	0	1	4	6	8	9	10	12	5	7	14
(0,1,4,5) 0-0-	X	X	x						x		
(0,1,8,9) - $00-\quad$ (EPI)	X	X			x	(x)					
(0,4,8,12) - - 00	X		x		X			x			
$(4,5,6,7) \quad 01$ - -			X	x					x	X	
$(4,6,12,14)-1-0$			X	x				x			X
$(8,10,12,14) 1-\mathrm{O}$ (EPI)					X		(x)	x			X

C. Give the minimized result in Boolean expressions (3 points)
$F(A, B, C, D)=B^{\prime} C^{\prime}+A D^{\prime}+B D^{\prime} O R F(A, B, C, D)=B^{\prime} C^{\prime}+A D^{\prime}+A^{\prime} B$

Question 4 (14 points): Implement the Boolean function $F(A, B, C)=A B+A^{\prime} C+A^{\prime} B^{\prime}$
A. Using a single 4×1 multiplexer. (6 Points)

A	B	C	F	
0	0	0	1	$I_{0}=1$
0	0	1	1	
0	1	0	0	$\mathrm{I}_{1}=\mathrm{C}$
0	1	1	1	
1	0	0	0	$\mathrm{I}_{2}=0$
1	0	1	0	
1	1	0	1	$\mathrm{I}_{3}=1$
1	1	1	1	

B. Using the minimum number of 2×4 decoders with enable and a single NOR gate. (8 Points)

$$
\begin{aligned}
& F=\sum m(0,1,3,6,7) \\
& F^{\prime}=\sum m(2,4,5)
\end{aligned}
$$

Question 5 (12 points):

A. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $\mathbf{F}=\mathbf{A B C}+\mathbf{D B} \mathbf{C}^{\prime}+\mathbf{A}^{\prime}$ using a minimum number of one gate type only. (6 points)

${ }^{\text {AB }}{ }^{\text {CD }} 00$				
00	1	1	1	1
01	1	1	1	1
11	0	0	1	1
10	0	1	0	0

If you answer it directly without minimization, we consider it correct

B. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $\mathbf{F}=(\mathbf{A}+\mathbf{B}+\mathrm{C})\left(\mathbf{D}+\mathbf{B}^{\prime}+\mathrm{C}^{\prime}\right)$. \mathbf{D} using a minimum number of one gate type only. (6 points)

$\triangle{ }^{\text {AB }}$				
00	(1)			0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

$$
\mathrm{F}=\mathrm{D} .(\mathrm{A}+\mathrm{B}+\mathrm{C})
$$

If you answer it directly without minimization, we consider it correct

Question 6 (14 points):

Design a combinational logic circuit which receives a 4-bit unsigned number $\mathbf{X}\left(X_{3} X_{2} X_{1} X_{0}\right)$ as input and produces an output \mathbf{Z} which equals the result of integer division of \mathbf{X} by 3 (e.g., if $\mathbf{X}=7, \mathbf{Z}=2$).
A. How many bits does the output Z have? Why? (2 points)

Max output value $=15 / 3=5 \rightarrow 3$-bits
B. Derive the truth table of this circuit. (6 points)

X_{3}	X_{2}	X_{1}	X_{0}	Z_{2}	Z_{1}	Z_{0}
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	1	0	1

C. Using K-maps, derive minimized sum-of-products expression for the circuit output(s). of the least significant output bits ($\mathbf{Z o}_{0}$). (6 points)

$$
Z 0=X_{3}^{\prime} X_{2} X^{\prime}{ }_{1}+X_{3} X_{1} X_{0}+X_{2}^{\prime} X_{1} X_{0}+X_{3} X_{2}^{\prime} X_{1}+X_{3} X^{\prime}{ }_{2} X_{0}
$$

